Publication

Searching for Communities: a Facebook Way

ACM SIGIR Conference on Research and Development in Information Retrieval


Abstract

Giving people the power to build community is central to Facebook’s mission. Technically, searching for communities poses very different challenges compared to the standard IR problems. First, there is a vocabulary mismatch problem since most of the content of the communities is private. Second, the common labeling strategies based on human ratings and clicks do not work well due to limited public content available to third-party raters and users at search time. Finally, community search has a dual objective of satisfying searchers and growing the number of active communities. While A/B testing is a well known approach for assessing the former, it is an open question on how to measure progress on the latter. This talk discusses these challenges in depth and describes our solution.

Related Publications

All Publications

Interspeech - October 12, 2021

LiRA: Learning Visual Speech Representations from Audio through Self-supervision

Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, Maja Pantic

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

IEEE Transactions on Image Processing Journal - March 9, 2021

Inspirational Adversarial Image Generation

Baptiste Rozière, Morgane Rivière, Olivier Teytaud, Jérémy Rapin, Yann LeCun, Camille Couprie

ICML - July 12, 2020

Lookahead-Bounded Q-Learning

Ibrahim El Shar, Daniel Jiang

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy