Scaffle: Bug Localization on Millions of Files

International Conference on Software Engineering (ICSE)


Despite all efforts to avoid bugs, software sometimes crashes in the field, leaving crash traces as the only information to localize the problem. Prior approaches on localizing where to fix the root cause of a crash do not scale well to ultra-large scale, heterogeneous code bases that contain millions of code files written in multiple programming languages. This paper presents Scaffle, the first scalable bug localization technique, which is based on the key insight to divide the problem into two easier sub-problems. First, a trained machine learning model predicts which lines of a raw crash trace are most informative for localizing the bug. Then, these lines are fed to an information retrieval-based search engine to retrieve file paths in the code base, predicting which file to change to address the crash. The approach does not make any assumptions about the format of a crash trace or the language that produces it. We evaluate Scaffle with tens of thousands of crash traces produced by a large-scale industrial code base at Facebook that contains millions of possible bug locations and that powers tools used by billions of people. The results show that the approach correctly predicts the file to fix for 40% to 60% (50% to 70%) of all crash traces within the top-1 (top-5) predictions. Moreover, Scaffle improves over several baseline approaches, including an existing classification-based approach, a scalable variant of existing information retrieval-based approaches, and a set of hand-tuned, industrially deployed heuristics.

Related Publications

All Publications

Uncertainty and Robustness in Deep Learning Workshop at ICML - June 24, 2021

DAIR: Data Augmented Invariant Regularization

Tianjian Huang, Chinnadhurai Sankar, Pooyan Amini, Satwik Kottur, Alborz Geramifard, Meisam Razaviyayn, Ahmad Beirami

AutoML Workshop at NeurIPS - July 18, 2021

Neural Fixed-Point Acceleration for Convex Optimization

Shobha Venkataraman, Brandon Amos

ESEM - September 23, 2021

Measurement Challenges for Cyber Cyber Digital Twins: Experiences from the Deployment of Facebook’s WW Simulation System

Kinga Bojarczuk, Inna Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Maria Lomeli, Simon Mark Lucas, Erik Meijer, Rubmary Rojas, Silvia Sapora

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy