RTFM: Generalizing to Novel Environment via Reading

International Conference on Learning Representations (ICLR)


Obtaining policies that can generalise to new environments in reinforcement learning is challenging. In this work, we demonstrate that language understanding via a reading policy learner is a promising vehicle for generalisation to new environments. We propose a grounded policy learning problem, Read to Fight Monsters (RTFM), in which the agent must jointly reason over a language goal, relevant dynamics described in a document, and environment observations. We procedurally generate environment dynamics and corresponding language descriptions of the dynamics, such that agents must read to understand new environment dynamics instead of memorising any particular information. In addition, we propose txt2π, a model that captures three-way interactions between the goal, document, and observations. On RTFM, txt2π generalises to new environments with dynamics not seen during training via reading. Furthermore, our model outperforms baselines such as FiLM and language-conditioned CNNs on RTFM. Through curriculum learning, txt2π produces policies that excel on complex RTFM tasks requiring several reasoning and coreference steps.

Related Publications

All Publications

CVPR - June 19, 2021

Pixel Codec Avatars

Shugao Ma, Tomas Simon, Jason Saragih, Dawei Wang, Yuecheng Li, Fernando De la Torre, Yaser Sheikh

CVPR - June 1, 2021

Semi-supervised Synthesis of High-Resolution Editable Textures for 3D Humans

Bindita Chaudhuri, Nikolaos Sarafianos, Linda Shapiro, Tony Tung

NeurIPS - December 6, 2020

High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization

Qing Feng, Benjamin Letham, Hongzi Mao, Eytan Bakshy

Innovative Technology at the Interface of Finance and Operations - March 31, 2021

Market Equilibrium Models in Large-Scale Internet Markets

Christian Kroer, Nicolas E. Stier-Moses

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy