RTFM: Generalizing to Novel Environment via Reading

International Conference on Learning Representations (ICLR)


Obtaining policies that can generalise to new environments in reinforcement learning is challenging. In this work, we demonstrate that language understanding via a reading policy learner is a promising vehicle for generalisation to new environments. We propose a grounded policy learning problem, Read to Fight Monsters (RTFM), in which the agent must jointly reason over a language goal, relevant dynamics described in a document, and environment observations. We procedurally generate environment dynamics and corresponding language descriptions of the dynamics, such that agents must read to understand new environment dynamics instead of memorising any particular information. In addition, we propose txt2π, a model that captures three-way interactions between the goal, document, and observations. On RTFM, txt2π generalises to new environments with dynamics not seen during training via reading. Furthermore, our model outperforms baselines such as FiLM and language-conditioned CNNs on RTFM. Through curriculum learning, txt2π produces policies that excel on complex RTFM tasks requiring several reasoning and coreference steps.

Related Publications

All Publications

Robust Market Equilibria with Uncertain Preferences

Riley Murray, Christian Kroer, Alex Peysakhovich, Parikshit Shah

AAAI - February 12, 2020

Weak-Attention Suppression For Transformer Based Speech Recognition

Yangyang Shi, Yongqiang Wang, Chunyang Wu, Christian Fuegen, Frank Zhang, Duc Le, Ching-Feng Yeh, Michael L. Seltzer

Interspeech - October 26, 2020

Machine Learning in Compilers: Past, Present, and Future

Hugh Leather, Chris Cummins

FDL - September 14, 2020

Unsupervised Cross-Domain Singing Voice Conversion

Adam Polyak, Lior Wolf, Yossi Adi, Yaniv Taigman

Interspeech - August 8, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy