Robust Audio-Visual Instance Discrimination

Conference on Computer Vision and Pattern Recognition (CVPR)


We present a self-supervised learning method to learn audio and video representations. Prior work uses the natural correspondence between audio and video to define a standard cross-modal instance discrimination task, where a model is trained to match representations from the two modalities. However, the standard approach introduces two sources of training noise. First, audio-visual correspondences often produce faulty positives since the audio and video signals can be uninformative of each other. To limit the detrimental impact of faulty positives, we optimize a weighted contrastive learning loss, which down-weighs their contribution to the overall loss. Second, since self-supervised contrastive learning relies on random sampling of negative instances, instances that are semantically similar to the base instance can be used as faulty negatives. To alleviate the impact of faulty negatives, we propose to optimize an instance discrimination loss with a soft target distribution that estimates relationships between instances. We validate our contributions through extensive experiments on action recognition tasks and show that they address the problems of audio-visual instance discrimination and improve transfer learning performance.

Related Publications

All Publications

CVPR - June 18, 2021

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

Marvin Eisenberger, David Novotny, Gael Kerchenbaum, Patrick Labatut, Natalia Neverova, Daniel Cremers, Andrea Vedaldi

CVPR - June 18, 2021

Discovering Relationships between Object Categories via Universal Canonical Maps

Natalia Neverova, Artsiom Sanakoyeu, Patrick Labatut, David Novotny, Andrea Vedaldi

CVPR - June 17, 2021

Connecting What to Say With Where to Look by Modeling Human Attention Traces

Zihang Meng, Licheng Yu, Ning Zhang, Tamara Berg, Babak Damavandi, Vikas Singh, Amy Bearman

DSN - June 21, 2021

Near-Realtime Server Reboot Monitoring and Root Cause Analysis in a Large-Scale System

Fred Lin, Bhargav Bolla, Eric Pinkham, Neil Kodner, Daniel Moore, Amol Desai, Sriram Sankar

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy