Rethinking floating point for deep learning

Systems for Machine Learning Workshop at NeurIPS 2018


Reducing hardware overhead of neural networks for faster or lower power inference and training is an active area of research. Uniform quantization using integer multiply-add has been thoroughly investigated, which requires learning many quantization parameters, fine-tuning training or other prerequisites. Little effort is made to improve floating point relative to this baseline; it remains energy inefficient, and word size reduction yields drastic loss in needed dynamic range. We improve floating point to be more energy efficient than equivalent bit width integer hardware on a 28 nm ASIC process while retaining accuracy in 8 bits with a novel hybrid log multiply/linear add, Kulisch accumulation and tapered encodings from Gustafson’s posit format. With no network retraining, and drop-in replacement of all math and float32 parameters via round-to-nearest-even only, this open-sourced 8-bit log float is within 0.9% top-1 and 0.2% top-5 accuracy of the original float32 ResNet-50 CNN model on ImageNet. Unlike int8 quantization, it is still a general purpose floating point arithmetic, interpretable out-of-the-box. Our 8/38-bit log float multiply-add is synthesized and power profiled at 28 nm at 0.96× the power and 1.12× the area of 8/32-bit integer multiply-add. In 16 bits, our log float multiply-add is 0.59× the power and 0.68× the area of IEEE 754 float16 fused multiply-add, maintaining the same signficand precision and dynamic range, proving useful for training ASICs as well.

Related Publications

All Publications

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

UAI - July 27, 2021

Measuring Data Leakage in Machine-Learning Models with Fisher Information

Awni Hannun, Chuan Guo, Laurens van der Maaten

arXiv - January 29, 2020

fastMRI: An Open Dataset and Benchmarks for Accelerated MRI

Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J. Muckley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero, Michael Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens, Larry Zitnick, Michael P. Recht, Daniel K. Sodickson, Yvonne W. Lui

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy