Publication

Recycle-GAN: Unsupervised Video Retargeting

European Conference on Computer Vision (ECCV)


Abstract

We introduce a data-driven approach for unsupervised video retargeting that translates content from one domain to another while preserving the style native to a domain, i.e., if contents of John Oliver’s speech were to be transferred to Stephen Colbert, then the generated content/speech should be in Stephen Colbert’s style. Our approach combines both spatial and temporal information along with adversarial losses for content translation and style preservation. In this work, we first study the advantages of using spatiotemporal constraints over spatial constraints for effective retargeting. We then demonstrate the proposed approach for the problems where information in both space and time matters such as face-to-face translation, flower-to-flower, wind and cloud synthesis, sunrise and sunset.

Related Publications

All Publications

EMNLP - October 31, 2021

Evaluation Paradigms in Question Answering

Pedro Rodriguez, Jordan Boyd-Graber

ASRU - December 13, 2021

Incorporating Real-world Noisy Speech in Neural-network-based Speech Enhancement Systems

Yangyang Xia, Buye Xu, Anurag Kumar

SIGGRAPH - August 2, 2021

Fast Diffraction Pathfinding for Dynamic Sound Propagation

Carl Schissler, Gregor Mückl, Paul Calamia

Uncertainty and Robustness in Deep Learning Workshop at ICML - June 24, 2021

DAIR: Data Augmented Invariant Regularization

Tianjian Huang, Chinnadhurai Sankar, Pooyan Amini, Satwik Kottur, Alborz Geramifard, Meisam Razaviyayn, Ahmad Beirami

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy