Recurrent Orthogonal Networks and Long-Memory Tasks

International Conference on Machine Learning


Although RNNs have been shown to be powerful tools for processing sequential data, finding architectures or optimization strategies that allow them to model very long term dependencies is still an active area of research. In this work, we carefully analyze two synthetic datasets originally outlined in (Hochreiter and Schmidhuber, 1997) which are used to evaluate the ability of RNNs to store information over many time steps. We explicitly construct RNN solutions to these problems, and using these constructions, illuminate both the problems themselves and the way in which RNNs store different types of information in their hidden states. These constructions furthermore explain the success of recent methods that specify unitary initializations or constraints on the transition matrices.

Related Publications

All Publications

NAACL - June 6, 2021

Deep Learning on Graphs for Natural Language Processing

Lingfei Wu, Yu Chen, Heng Ji, Yunyao Li

ICASSP - June 6, 2021

On the Predictability of HRTFs from Ear Shapes Using Deep Networks

Yaxuan Zhou, Hao Jiang, Vamsi Krishna Ithapu

CoRL - December 1, 2020

Auxiliary Tasks Speed Up Learning PointGoal Navigation

Joel Ye, Dhruv Batra, Erik Wijmans, Abhishek Das

ACL - July 7, 2020

CraftAssist Instruction Parsing: Semantic Parsing for a Voxel-World Assistant

Kavya Srinet, Yacine Jernite, Jonathan Gray, Arthur Szlam

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy