Publication

Recovering AES Keys with a Deep Cold Boot Attack

International Conference on Machine Learning (ICML)


Abstract

Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down. While most of the bits have been corrupted, many bits, at random locations, have not. Since the keys in many encryption schemes are being expanded in memory into longer keys with fixed redundancies, the keys can often be restored. In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys. Even though AES consists of Rijndael S-box elements, that are specifically designed to be resistant to linear and differential cryptanalysis, our method provides a novel formalization of the AES key scheduling as a computational graph, which is implemented by a neural message passing network. Our results show that our methods outperform the state of the art attack methods by a very large margin.

Related Publications

All Publications

ACM MM - October 20, 2021

EVRNet: Efficient Video Restoration on Edge Devices

Sachin Mehta, Amit Kumar, Fitsum Reda, Varun Nasery, Vikram Mulukutla, Rakesh Ranjan, Vikas Chandra

ICCV - October 11, 2021

Egocentric Pose Estimation from Human Vision Span

Hao Jiang, Vamsi Krishna Ithapu

TSE - June 29, 2021

Learning From Mistakes: Machine Learning Enhanced Human Expert Effort Estimates

Federica Sarro, Rebecca Moussa, Alessio Petrozziello, Mark Harman

Journal of Big Data - July 19, 2021

Cumulative deviation of a subpopulation from the full population

Mark Tygert

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy