Reconstructing Scenes with Mirror and Glass Surfaces



Planar reflective surfaces such as glass and mirrors are notoriously hard to reconstruct for most current 3D scanning techniques. When treated naïvely, they introduce duplicate scene structures, effectively destroying the reconstruction altogether. Our key insight is that an easy to identify structure attached to the scanner—in our case an AprilTag—can yield reliable information about the existence and the geometry of glass and mirror surfaces in a scene. We introduce a fully automatic pipeline that allows us to reconstruct the geometry and extent of planar glass and mirror surfaces while being able to distinguish between the two. Furthermore, our system can automatically segment observations of multiple reflective surfaces in a scene based on their estimated planes and locations. In the proposed setup, minimal additional hardware is needed to create high-quality results. We demonstrate this using reconstructions of several scenes with a variety of real mirrors and glass.

Related Publications

All Publications

SIGGRAPH - August 9, 2021

Mixture of Volumetric Primitives for Efficient Neural Rendering

Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser Sheikh, Jason Saragih

Presentation on Late-Breaking Work at CHI - May 9, 2021

A Multichannel Pneumatic Analog Control System for Haptic Displays

Benjamin Stephens-Fripp, Ali Israr, Carine Rognon

ACM CHI Virtual Conference on Human Factors in Computing Systems (CHI) - May 8, 2021

Armstrong: An Empirical Examination of Pointing at Non-Dominant Arm-Anchored UIs in Virtual Reality

Zhen Li, Joannes Chan, Joshua Walton, Hrvoje Benko, Daniel Wigdor, Michael Glueck

CHI - May 8, 2021

Understanding, Detecting and Mitigating the Effects of Coactivations in Ten-Finger Mid-Air Typing in Virtual Reality

Conor R. Foy, John J. Dudley, Aakar Gupta, Hrvoje Benko, Per Ola Kristensson

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy