Publication

Reconstructing Scenes with Mirror and Glass Surfaces

ACM SIGGRAPH


Abstract

Planar reflective surfaces such as glass and mirrors are notoriously hard to reconstruct for most current 3D scanning techniques. When treated naïvely, they introduce duplicate scene structures, effectively destroying the reconstruction altogether. Our key insight is that an easy to identify structure attached to the scanner—in our case an AprilTag—can yield reliable information about the existence and the geometry of glass and mirror surfaces in a scene. We introduce a fully automatic pipeline that allows us to reconstruct the geometry and extent of planar glass and mirror surfaces while being able to distinguish between the two. Furthermore, our system can automatically segment observations of multiple reflective surfaces in a scene based on their estimated planes and locations. In the proposed setup, minimal additional hardware is needed to create high-quality results. We demonstrate this using reconstructions of several scenes with a variety of real mirrors and glass.

Related Publications

All Publications

Compacted CPU/GPU Data Compression via Modified Virtual Address Translation

Larry Seiler, Daqi Lin, Cem Yuksel

High Performance Graphics - August 15, 2020

Neuro-Symbolic Generative Art: A Preliminary Study

Gunjan Aggarwal, Devi Parikh

ICCC - September 7, 2020

Numerical simulations of near-field head-related transfer functions: Magnitude verification and validation with laser spark sources

Sebastian T. Prepeliţă, Javier Gómez Bolaños, Ville Pulkki, Lauri Savioja, Ravish Mehra

Journal of the Acoustical Society of America - July 10, 2020

A Hybrid Active-Passive Actuation and Control Approach for Kinesthetic Handheld Haptics

Patrick Dills, Nick Colonnese, Priyanshu Agarwal, Michael Zinn

Haptics Symposium - May 12, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy