RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing

International Symposium on Computer Architecture (ISCA)


Personalized recommendation systems leverage deep learning models and account for the majority of data center AI cycles. Their performance is dominated by memory-bound sparse embedding operations with unique irregular memory access patterns that pose a fundamental challenge to accelerate. This paper proposes a lightweight, commodity DRAM compliant, near-memory processing solution to accelerate personalized recommendation inference. The in-depth characterization of production-grade recommendation models shows that embedding operations with high model-, operator- and data-level parallelism lead to memory bandwidth saturation, limiting recommendation inference performance. We propose RecNMP which provides a scalable solution to improve system throughput, supporting a broad range of sparse embedding models. RecNMP is specifically tailored to production environments with heavy co-location of operators on a single server. Several hardware/software co-optimization techniques such as memory-side caching, table-aware packet scheduling, and hot entry profiling are studied, providing up to 9.8× memory latency speedup over a highly optimized baseline. Overall, RecNMP offers 4.2× throughput improvement and 45.8% memory energy savings.

Related Publications

All Publications

EACL - April 20, 2021

FEWS: Large-Scale, Low-Shot Word Sense Disambiguation with the Dictionary

Terra Blevins, Mandar Joshi, Luke Zettlemoyer

CVPR - June 19, 2021

Robust Audio-Visual Instance Discrimination

Pedro Morgado, Ishan Misra, Nuno Vasconcelos

CVPR - June 19, 2021

Audio-Visual Instance Discrimination with Cross-Modal Agreement

Pedro Morgado, Nuno Vasconcelos, Ishan Misra

The Springer Series on Challenges in Machine Learning - December 12, 2019

The Second Conversational Intelligence Challenge (ConvAI2)

Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander Miller, Kurt Shuster, Jack Urbanek, Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan Lowe, Shrimai Prabhumoye, Alan W. Black, Alexander Rudnicky, Jason Williams, Joelle Pineau, Jason Weston

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy