RecNMP: Accelerating Personalized Recommendation with Near-Memory Processing

International Symposium on Computer Architecture (ISCA)


Personalized recommendation systems leverage deep learning models and account for the majority of data center AI cycles. Their performance is dominated by memory-bound sparse embedding operations with unique irregular memory access patterns that pose a fundamental challenge to accelerate. This paper proposes a lightweight, commodity DRAM compliant, near-memory processing solution to accelerate personalized recommendation inference. The in-depth characterization of production-grade recommendation models shows that embedding operations with high model-, operator- and data-level parallelism lead to memory bandwidth saturation, limiting recommendation inference performance. We propose RecNMP which provides a scalable solution to improve system throughput, supporting a broad range of sparse embedding models. RecNMP is specifically tailored to production environments with heavy co-location of operators on a single server. Several hardware/software co-optimization techniques such as memory-side caching, table-aware packet scheduling, and hot entry profiling are studied, providing up to 9.8× memory latency speedup over a highly optimized baseline. Overall, RecNMP offers 4.2× throughput improvement and 45.8% memory energy savings.

Related Publications

All Publications

LEEP: A New Measure to Evaluate Transferability of Learned Representations

Cuong V. Nguyen, Tal Hassner, Matthias Seeger, Cedric Archambeau

ICML - July 13, 2020

The Differentiable Cross-Entropy Method

Brandon Amos, Denis Yarats

ICML - July 12, 2020

Growing Action Spaces

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve

July 14, 2020

Stochastic Hamiltonian Gradient Methods for Smooth Games

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas

ICML - July 12, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy