Publication

Re-Examining Linear Embeddings for High-dimensional Bayesian Optimization

Conference on Neural Information Processing Systems (NeurIPS)


Abstract

Bayesian optimization (BO) is a popular approach to optimize expensive-to-evaluate black-box functions. A significant challenge in BO is to scale to high-dimensional parameter spaces while retaining sample efficiency. A solution considered in existing literature is to embed the high-dimensional space in a lower-dimensional manifold, often via a random linear embedding. In this paper, we identify several crucial issues and misconceptions about the use of linear embeddings for BO. We study the properties of linear embeddings from the literature and show that some of the design choices in current approaches adversely impact their performance. We show empirically that properly addressing these issues significantly improves the efficacy of linear embeddings for BO on a range of problems, including learning a gait policy for robot locomotion.

Related Publications

All Publications

Uncertainty and Robustness in Deep Learning Workshop at ICML - June 24, 2021

DAIR: Data Augmented Invariant Regularization

Tianjian Huang, Chinnadhurai Sankar, Pooyan Amini, Satwik Kottur, Alborz Geramifard, Meisam Razaviyayn, Ahmad Beirami

AutoML Workshop at NeurIPS - July 18, 2021

Neural Fixed-Point Acceleration for Convex Optimization

Shobha Venkataraman, Brandon Amos

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

UAI - July 28, 2021

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy