RacerD: Compositional Static Race Detection

Conference on Object-Oriented Programming, Systems, Languages & Applications (OOPSLA)


Automatic static detection of data races is one of the most basic problems in reasoning about concurrency. We present RacerD—a static program analysis for detecting data races in Java programs which is fast, can scale to large code, and has proven effective in an industrial software engineering scenario. To our knowledge, RacerD is the first inter-procedural, compositional data race detector which has been empirically shown to have non-trivial precision and impact. Due to its compositionality, it can analyze code changes quickly, and this allows it to perform continuous reasoning about a large, rapidly changing codebase as part of deployment within a continuous integration ecosystem. In contrast to previous static race detectors, its design favors reporting high-confidence bugs over ensuring their absence. RacerD has been in deployment for over a year at Facebook, where it has flagged over 2500 issues that have been fixed by developers before reaching production. It has been important in enabling the development of new code as well as fixing old code: it helped support the conversion of part of the main Facebook Android app from a single-threaded to a multi-threaded architecture. In this paper we describe RacerD’s design, implementation, deployment and impact.

Related Publications

All Publications

Turbine: Facebook’s Service Management Platform for Stream Processing

Yuan Mei, Luwei Cheng, Vanish Talwar, Michael Y. Levin, Gabriela Jacques da Silva, Nikhil Simha, Anirban Banerjee, Brian Smith, Tim Williamson, Serhat Yilmaz, Weitao Duan, Guoqiang Jerry Chen

ICDE - April 21, 2020

WES: Agent-based User Interaction Simulation on Real Infrastructure

John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Ralf Lämmel, Erik Meijer, Silvia Sapora, Justin Spahr-Summers

Genetic Improvement Workshop - April 29, 2020

Optimizing Interrupt Handling Performance for Memory Failures in Large Scale Data Centers

Harish Dattatraya Dixit, Fred Lin, Bill Holland, Matt Beadon, Zhengyu Yang, Sriram Sankar

ICPE - April 20, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy