Question and Answer Test-Train Overlap in Open-Domain Question Answering Datasets



Ideally Open-Domain Question Answering models should exhibit a number of competencies, ranging from simply memorizing questions seen at training time, to answering novel question formulations with answers seen during training, to generalizing to completely novel questions with novel answers. However, single aggregated test set scores do not show the full picture of what capabilities models truly have. In this work, we perform a detailed study of the test sets of three popular open-domain benchmark datasets with respect to these competencies. We find that 60-70% of test-time answers are also present somewhere in the training sets. We also find that 30% of test-set questions have a near-duplicate paraphrase in their corresponding training sets. Using these findings, we evaluate a variety of popular open-domain models to obtain greater insight into what extent they can actually generalize, and what drives their overall performance. We find that all models perform dramatically worse on questions that cannot be memorized from training sets, with a mean absolute performance difference of 61% between repeated and non-repeated data. Finally we show that simple nearest-neighbor models outperform a BART closed-book QA model, further highlighting the role that training set memorization plays in these benchmarks.

Related Publications

All Publications

Electronics (MDPI) Journal - November 4, 2021

Performance Evaluation of Offline Speech Recognition on Edge Devices

Santosh Gondi, Vineel Pratap

EMNLP Conference on Machine Translation (WMT) - October 1, 2020

BERGAMOT-LATTE Submissions for the WMT20 Quality Estimation Shared Task

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Vishrav Chaudhary, Mark Fishel, Francisco Guzmán, Lucia Specia

Electronics (MDPI) Journal - November 10, 2021

Performance and Efficiency Evaluation of ASR Inference on the Edge

Santosh Gondi, Vineel Pratap

WMT - November 8, 2021

Findings of the WMT 2021 Shared Task on Large-Scale Multilingual Machine Translation

Guillaume Wenzek, Vishrav Chaudhary, Angela Fan, Sahir Gomez, Naman Goyal, Somya Jain, Douwe Kiela, Tristan Thrush, Francisco Guzmán

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy