Preference Amplification in Recommender Systems

Conference on Knowledge Discovery and Data Mining (SIGKDD)


Recommender systems have become increasingly accurate in suggesting content to users, resulting in users primarily consuming content through recommendations. This can cause the user’s interest to narrow toward the recommended content, something we refer to as preference amplification. While this can contribute to increased engagement, it can also lead to negative experiences such as lack of diversity and echo chambers. We propose a theoretical framework for studying such amplification in a matrix factorization based recommender system. We model the dynamics of the system, where users interact with the recommender systems and gradually “drift” toward the recommended content, with the recommender system adapting, based on user feedback, to the updated preferences. We study the conditions under which preference amplification manifests, and validate our results with simulations. Finally, we evaluate mitigation strategies that prevent the adverse effects of preference amplification and present experimental results using a real-world large-scale video recommender system showing that by reducing exposure to potentially objectionable content we can increase user engagement by up to 2%.

Related Publications

All Publications

Uncertainty and Robustness in Deep Learning Workshop at ICML - June 24, 2021

DAIR: Data Augmented Invariant Regularization

Tianjian Huang, Chinnadhurai Sankar, Pooyan Amini, Satwik Kottur, Alborz Geramifard, Meisam Razaviyayn, Ahmad Beirami

AutoML Workshop at NeurIPS - July 18, 2021

Neural Fixed-Point Acceleration for Convex Optimization

Shobha Venkataraman, Brandon Amos

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

UAI - July 28, 2021

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy