Publication

Preference Amplification in Recommender Systems

Conference on Knowledge Discovery and Data Mining (SIGKDD)


Abstract

Recommender systems have become increasingly accurate in suggesting content to users, resulting in users primarily consuming content through recommendations. This can cause the user’s interest to narrow toward the recommended content, something we refer to as preference amplification. While this can contribute to increased engagement, it can also lead to negative experiences such as lack of diversity and echo chambers. We propose a theoretical framework for studying such amplification in a matrix factorization based recommender system. We model the dynamics of the system, where users interact with the recommender systems and gradually “drift” toward the recommended content, with the recommender system adapting, based on user feedback, to the updated preferences. We study the conditions under which preference amplification manifests, and validate our results with simulations. Finally, we evaluate mitigation strategies that prevent the adverse effects of preference amplification and present experimental results using a real-world large-scale video recommender system showing that by reducing exposure to potentially objectionable content we can increase user engagement by up to 2%.

Related Publications

All Publications

Uncertainty and Robustness in Deep Learning Workshop at ICML - August 1, 2020

Tilted Empirical Risk Minimization

Tian Li, Ahmad Beirami, Maziar Sanjabi, Virginia Smith

arxiv - November 1, 2020

The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Pratik Ringshia, Davide Testuggine

ICML - July 24, 2021

Using Bifurcations for Diversity in Differentiable Games

Jonathan Lorraine, Jack Parker-Holder, Paul Vicol, Aldo Pacchiano, Luke Metz, Tal Kachman, Jakob Foerster

UAI - July 23, 2021

High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces

David Eriksson, Martin Jankowiak

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy