Publication

Predictive Precompute with Recurrent Neural Networks

Conference on Machine Learning and Systems (MLSys)


Abstract

In both mobile and web applications, speeding up user interface response times can often lead to significant improvements in user engagement. A common technique to improve responsiveness is to precompute data ahead of time for specific activities. However, simply precomputing data for all user and activity combinations is prohibitive at scale due to both network constraints and server-side computational costs. It is therefore important to accurately predict per-user application usage in order to minimize wasted precomputation (“predictive precompute”). In this paper, we describe the novel application of recurrent neural networks (RNNs) for predictive precompute. We compare their performance with traditional machine learning models, and share findings from their large-scale production use at Facebook. We demonstrate that RNN models improve prediction accuracy, eliminate most feature engineering steps, and reduce the computational cost of serving predictions by an order of magnitude.

Related Publications

All Publications

Innovative Technology at the Interface of Finance and Operations - April 12, 2021

Market Equilibrium Models in Large-Scale Internet Markets

Christian Kroer, Nicolas E. Stier-Moses

Human Interpretability Workshop at ICML - April 9, 2021

Investigating Effects of Saturation in Integrated Gradients

Vivek Miglani, Bilal Alsallakh, Narine Kokhlikyan, Orion Reblitz-Richardson

ICASSP - April 8, 2021

Multi-Channel Speech Enhancement Using Graph Neural Networks

Panagiotis Tzirakis, Anurag Kumar, Jacob Donley

IMC - October 21, 2019

Internet Performance from Facebook’s Edge

Brandon Schlinker, Italo Cunha, Yi-Ching Chiu, Srikanth Sundaresan, Ethan Katz-Bassett

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy