Publication

Predicting Remediations for Hardware Failures in Large-Scale Datacenters

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)


Abstract

Large-scale service environments rely on autonomous systems for remediating hardware failures efficiently. In production, the autonomous system diagnoses hardware failures based on the rules that the subject matter experts put in the system. This process is increasingly complex given new types of failures and the increasing complexity in the hardware and software configurations.

In this paper, we present a machine learning framework that predicts the required remediations for undiagnosed failures, based on the similar repair tickets closed in the past. We explain the methodology in detail for setting up a machine learning model, deploying it in a production environment, and monitoring its performance with the necessary metrics. We also demonstrate the prediction performance on some of the repair actions.

Related Publications

All Publications

COLING - December 8, 2020

Best Practices for Data-Efficient Modeling in NLG: How to Train Production-Ready Neural Models with Less Data

Ankit Arun, Soumya Batra, Vikas Bhardwaj, Ashwini Challa, Pinar Donmez, Peyman Heidari, Hakan Inan, Shashank Jain, Anuj Kumar, Shawn Mei, Karthik Mohan, Michael White

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

NeurIPS - November 25, 2020

Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian

Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer, Alistair Letcher, Alex Peysakhovich, Aldo Pacchiano, Jakob Foerster

NeurIPS - December 7, 2020

Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees

Shali Jiang, Daniel Jiang, Max Balandat, Brian Karrer, Jacob R. Gardner, Roman Garnett

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy