Publication

PointRend: Image Segmentation as Rendering

Conference on Computer Vision and Pattern Recognition (CVPR)


Abstract

We present a new method for efficient high-quality image segmentation of objects and scenes. By analogizing classical computer graphics methods for efficient rendering with over- and undersampling challenges faced in pixel labeling tasks, we develop a unique perspective of image segmentation as a rendering problem. From this vantage, we present the PointRend (Point-based Rendering) neural network module: a module that performs point-based segmentation predictions at adaptively selected locations based on an iterative subdivision algorithm. PointRend can be flexibly applied to both instance and semantic segmentation tasks by building on top of existing state-of-the-art models. While many concrete implementations of the general idea are possible, we show that a simple design already achieves excellent results. Qualitatively, PointRend outputs crisp object boundaries in regions that are oversmoothed by previous methods. Quantitatively, PointRend yields significant gains on COCO and Cityscapes, for both instance and semantic segmentation. PointRend’s efficiency enables output resolutions that are otherwise impractical in terms of memory or computation compared to existing approaches. Code has been made available at https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend.

Related Publications

All Publications

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

NeurIPS - December 4, 2020

Demystifying Contrastive Self-Supervised Learning: Invariances, Augmentations and Dataset Biases

Senthil Purushwalkam, Abhinav Gupta

3DV - November 25, 2020

MonoClothCap: Towards Temporally Coherent Clothing Capture from Monocular RGB Video

Donglai Xiang, Fabian Prada, Chenglei Wu, Jessica Hodgins

CVPR - November 9, 2020

One-Shot Domain Adaptation For Face Generation

Chao Yang, Ser Nam Lim

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy