Phrase-Based & Neural Unsupervised Machine Translation

Empirical Methods in Natural Language Processing (EMNLP)


Machine translation systems achieve near human-level performance on some languages, yet their effectiveness strongly relies on the availability of large amounts of bitexts, which hinders their applicability to the majority of language pairs. This work investigates how to learn to translate when having access to only large monolingual corpora in each language. We propose two model variants, a neural and a phrase-based model. Both versions leverage automatic generation of parallel data by back-translating with a backward model operating in the other direction, and the denoising effect of a language model trained on the target side. These models are significantly better than methods from the literature, while being simpler and having fewer hyper-parameters. On the widely used WMT’14 English-French and WMT’16 German-English benchmarks, our models respectively obtain 27.1 and 23.6 BLEU points without using a single parallel sentence, outperforming the state of the art by more than 11 BLEU points.

Related Publications

All Publications

AISTATS - April 13, 2021

Aligning Time Series on Incomparable Spaces

Samuel Cohen, Giulia Luise, Alexander Terenin, Brandon Amos, Marc Peter Deisenroth

SIGGRAPH - August 9, 2021

Mixture of Volumetric Primitives for Efficient Neural Rendering

Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser Sheikh, Jason Saragih

AISTATS - April 13, 2021

Continual Learning using a Bayesian Nonparametric Dictionary of Weight Factors

Nikhil Mehta, Kevin J Liang, Vinay K Verma, Lawrence Carin

NeurIPS - December 6, 2020

Improved Sample Complexity for Incremental Autonomous Exploration in MDPs

Jean Tarbouriech, Matteo Pirotta, Michal Valko, Alessandro Lazaric

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy