Publication

Permutation Equivariant Models for Compositional Generalization in Language

International Conference on Learning Representations (ICLR)


Abstract

Humans understand novel sentences by composing meanings and roles of core language components. In contrast, neural network models for natural language modeling fail when such compositional generalization is required. The main contribution of this paper is to hypothesize that language compositionality is a form of group-equivariance. Based on this hypothesis, we propose a set of tools for constructing equivariant sequence-to-sequence models. Throughout a variety of experiments on the SCAN tasks, we analyze the behavior of existing models under the lens of equivariance, and demonstrate that our equivariant architecture is able to achieve the type compositional generalization required in human language understanding.

Related Publications

All Publications

COLING - December 8, 2020

Best Practices for Data-Efficient Modeling in NLG: How to Train Production-Ready Neural Models with Less Data

Ankit Arun, Soumya Batra, Vikas Bhardwaj, Ashwini Challa, Pinar Donmez, Peyman Heidari, Hakan Inan, Shashank Jain, Anuj Kumar, Shawn Mei, Karthik Mohan, Michael White

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

NeurIPS - November 25, 2020

Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian

Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer, Alistair Letcher, Alex Peysakhovich, Aldo Pacchiano, Jakob Foerster

NeurIPS - November 30, 2020

Adversarial Attacks on Linear Contextual Bandits

Evrard Garcelon, Baptiste Roziere, Laurent Meunier, Jean Tarbouriech, Olivier Teytaud, Alessandro Lazaric, Matteo Pirotta

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy