Performance of Regression-Based Precoding for Multi-User Massive MIMO-OFDM Systems.

EURASIP Journal on Advances in Signal Processing


We study the performance of a single-cell massive multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system that uses linear precoding to serve multiple users on the same time-frequency resource. To minimize overhead, the channel estimates at the base station are obtained via comb-type pilot tones during the training phase of a time-division duplexing system. Polynomial regression is used to interpolate the channel estimates within each coherence block. We show how such regressors can be designed in an offline fashion without the need to obtain channel statistics at the base station, and we assess the downlink performance over a wide range of system parameters.

Related Publications

All Publications

WES: Agent-based User Interaction Simulation on Real Infrastructure

John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Ralf Lämmel, Erik Meijer, Silvia Sapora, Justin Spahr-Summers

Genetic Improvement Workshop - April 29, 2020

Aeroelastic Preliminary-Design Optimization of Communication Tower Structures

Vishvas Suryakumar, Paul Varkey, Ben Thomsen, Jack Marriott, David Liu, Abhishek Tiwari

AIAA Scitech - January 6, 2020

Gabor Frame-Based Sparsification and Radiation Boundary Conditions for Parabolic Wave Equations

Max Bright, Julius Kusuma, Eric Michielssen

IEEE AP-S/URSI - July 8, 2019

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy