Publication

Performance Evaluation of Offline Speech Recognition on Edge Devices

Electronics (MDPI) Journal


Abstract

Deep learning–based speech recognition applications have made great strides in the past decade. Deep learning–based systems have evolved to achieve higher accuracy while using simpler end-to-end architectures, compared to their predecessor hybrid architectures. Most of these state-of-the-art systems run on backend servers with large amounts of memory and CPU/GPU resources. The major disadvantage of server-based speech recognition is the lack of privacy and security for user speech data. Additionally, because of network dependency, this server-based architecture cannot always be reliable, performant and available. Nevertheless, offline speech recognition on client devices overcomes these issues. However, resource constraints on smaller edge devices may pose challenges for achieving state-of-the-art speech recognition results. In this paper, we evaluate the performance and efficiency of transformer-based speech recognition systems on edge devices. We evaluate inference performance on two popular edge devices, Raspberry Pi and Nvidia Jetson Nano, running on CPU and GPU, respectively. We conclude that with PyTorch mobile optimization and quantization, the models can achieve real-time inference on the Raspberry Pi CPU with a small degradation to word error rate. On the Jetson Nano GPU, the inference latency is three to five times better, compared to Raspberry Pi. The word error rate on the edge is still higher, but it is not too far behind, compared to that on the server inference.

SUPPLEMENTARY MATERIAL

Related Publications

All Publications

EMNLP Conference on Machine Translation (WMT) - October 1, 2020

BERGAMOT-LATTE Submissions for the WMT20 Quality Estimation Shared Task

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Vishrav Chaudhary, Mark Fishel, Francisco Guzmán, Lucia Specia

Electronics (MDPI) Journal - November 10, 2021

Performance and Efficiency Evaluation of ASR Inference on the Edge

Santosh Gondi, Vineel Pratap

WMT - November 8, 2021

Findings of the WMT 2021 Shared Task on Large-Scale Multilingual Machine Translation

Guillaume Wenzek, Vishrav Chaudhary, Angela Fan, Sahir Gomez, Naman Goyal, Somya Jain, Douwe Kiela, Tristan Thrush, Francisco Guzmán

Natural Language Processing for Indigenous Languages of the Americas (AmericasNLP) at NAACL - July 1, 2021

Findings of the AmericasNLP 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas

Manuel Mager, Arturo Oncevay, Abteen Ebrahimi, John Ortega, Annette Rios, Angela Fan, Ximena Gutierrez-Vasques, Luis Chiruzzo, Gustavo A. Giménez-Lugo, Ricardo Ramos, Ivan Vladimir Meza Ruiz, Rolando Coto-Solano, Alexis Palmer, Elisabeth Mager, Vishrav Chaudhary, Graham Neubig, Ngoc Thang Vu, Katharina Kann

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy