Research Area
Year Published

143 Results

July 10, 2018

Optimizing the Latent Space of Generative Networks

International Conference on Machine Learning (ICML)

The goal of this paper is to disentangle the contribution of these two factors to the success of GANs. In particular, we introduce Generative Latent Optimization (GLO), a framework to train deep convolutional generators using simple reconstruction losses.

By: Piotr Bojanowski, Armand Joulin, David Lopez-Paz, Arthur Szlam
July 10, 2018

Modeling Others using Oneself in Multi-Agent Reinforcement Learning

International Conference on Machine Learning (ICML)

We consider the multi-agent reinforcement learning setting with imperfect information in which each agent is trying to maximize its own utility.

By: Roberta Raileanu, Emily Denton, Arthur Szlam, Rob Fergus
July 10, 2018

Gradient Descent Learns One-hidden-layer CNN: Don’t be Afraid of Spurious Local Minima

International Conference on Machine Learning (ICML)

We consider the problem of learning a one-hidden-layer neural network with non-overlapping convolutional layer and ReLU activation function, i.e., f(Z; w, a) = Σj ajσ(wT Zj), in which both the convolutional weights w and the output weights a are parameters to be learned.

By: Simon S. Du, Jason D. Lee, Yuandong Tian, Barnabás Póczos, Aarti Singh
July 7, 2018

Algorithmic Regularization in Over-parameterized Matrix Sensing and Neural Networks with Quadratic Activations

arXiv

We show that the gradient descent algorithm provides an implicit regularization effect in the learning of over-parameterized matrix factorization models and one-hidden-layer neural networks with quadratic activations.

By: Yuanzhi Li, Tengyu Ma, Hongyang Zhang
June 29, 2018

Understanding the Loss Surface of Neural Networks for Binary Classification

International Conference on Machine Learning (ICML)

Here we focus on the training performance of neural networks for binary classification, and provide conditions under which the training error is zero at all local minima of appropriately chosen surrogate loss functions.

By: Shiyu Liang, Ruoyu Sun, Yixuan Li, R. Srikant
June 28, 2018

Hardware Remediation At Scale

International Conference on Dependable Systems and Networks (DSN)

Large scale services have automated hardware remediation to maintain the infrastructure availability at a healthy level. In this paper, we share the current remediation flow at Facebook, and how it is being monitored.

By: Fan (Fred) Lin, Matt Beadon, Harish Dattatraya Dixit, Gautham Vunnam, Amol Desai, Sriram Sankar
June 25, 2018

Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems

IEEE Access 2018

Supporting high mobility in millimeter wave (mmWave) systems enables a wide range of important applications such as vehicular communications and wireless virtual/augmented reality. Realizing this in practice, though, requires overcoming several challenges.

By: Ahmed Alkhateeb, Sam Alex, Paul Varkey, Ying Li, Qi Qu, Djordje Tujkovic
June 19, 2018

A Generative Adversarial Approach for Zero-Shot Learning from Noisy Texts

Computer Vision and Pattern Recognition (CVPR)

Most existing zero-shot learning methods consider the problem as a visual semantic embedding one. Given the demonstrated capability of Generative Adversarial Networks (GANs) to generate images, we instead leverage GANs to imagine unseen categories from text descriptions and hence recognize novel classes with no examples being seen.

By: Yizhe Zhu, Mohamed Elhoseiny, Bingchen Liu, Xi Peng, Ahmed Elgammal
June 18, 2018

A Holistic Framework for Addressing the World using Machine Learning

Computer Vision and Pattern Recognition (CVPR)

Millions of people are disconnected from basic services due to lack of adequate addressing. We propose an automatic generative algorithm to create street addresses from satellite imagery.

By: Ilke Demir, Forest Hughes, Aman Raj, Kaunil Dhruv, Suryanarayana Murthy Muddala, Sanyam Garg, Barrett Doo
June 18, 2018

DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images

CVPR Workshop - DeepGlobe 2018

Similar to other challenges in computer vision domain such as DAVIS[21] and COCO[33], DeepGlobe proposes three datasets and corresponding evaluation methodologies, coherently bundled in three competitions with a dedicated workshop co-located with CVPR 2018.

By: Ilke Demir, Krzysztof Koperski, David Lindenbaum, Guan Pang, Jing Huang, Saikat Basu, Forest Hughes, Devis Tuia, Ramesh Raskar