All Research Areas
Research Areas
Year Published

520 Results

June 18, 2018

CondenseNet: An Efficient DenseNet using Learned Group Convolutions

Computer Vision and Pattern Recognition (CVPR)

In this paper we develop CondenseNet, a novel network architecture with unprecedented efficiency. It combines dense connectivity with a novel module called learned group convolution. 

By: Gao Huang, Shichen Liu, Laurens van der Maaten, Kilian Q. Weinberger
June 18, 2018

Detect-and-Track: Efficient Pose Estimation in Videos

Computer Vision and Pattern Recognition (CVPR)

This paper addresses the problem of estimating and tracking human body keypoints in complex, multi-person video. We propose an extremely lightweight yet highly effective approach that builds upon the latest advancements in human detection [17] and video understanding [5].

By: Rohit Girdhar, Georgia Gkioxari, Lorenzo Torresani, Manohar Paluri, Du Tran
June 18, 2018

Eye In-Painting with Exemplar Generative Adversarial Networks

Computer Vision and Pattern Recognition (CVPR)

This paper introduces a novel approach to in-painting where the identity of the object to remove or change is preserved and accounted for at inference time: Exemplar GANs (ExGANs). ExGANs are a type of conditional GAN that utilize exemplar information to produce high-quality, personalized in-painting results.

By: Brian Dolhansky, Cristian Canton Ferrer
June 18, 2018

Audio to Body Dynamics

Computer Vision and Pattern Recognition (CVPR)

We present a method that gets as input an audio of violin or piano playing, and outputs a video of skeleton predictions which are further used to animate an avatar. The key idea is to create an animation of an avatar that moves their hands similarly to how a pianist or violinist would do, just from audio.

By: Eli Shlizerman, Lucio Dery, Hayden Schoen, Ira Kemelmacher Shlizerman
June 18, 2018

Non-Local Neural Networks

Computer Vision and Pattern Recognition (CVPR)

Both convolutional and recurrent operations are building blocks that process one local neighborhood at a time. In this paper, we present non-local operations as a generic family of building blocks for capturing long-range dependencies.

By: Xiaolong Wang, Ross Girshick, Abhinav Gupta, Kaiming He
June 18, 2018

Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and Bodies

Computer Vision and Pattern Recognition (CVPR)

We present a unified deformation model for the markerless capture of human movement at multiple scales, including facial expressions, body motion, and hand gestures.

By: Hanbyul Joo, Tomas Simon, Yaser Sheikh
June 18, 2018

Detecting and Recognizing Human-Object Interactions

Computer Vision and Pattern Recognition (CVPR)

In this paper, we address the task of detecting triplets in challenging everyday photos. We propose a novel model that is driven by a human-centric approach. Our hypothesis is that the appearance of a person – their pose, clothing, action – is a powerful cue for localizing the objects they are interacting with.

By: Georgia Gkioxari, Ross Girshick, Piotr Dollar, Kaiming He
June 18, 2018

On the iterative refinement of densely connected representation levels for semantic segmentation

CVPR Workshop (CVPRW) on Autonomous Driving

In this paper, we systematically study the differences introduced by distinct receptive field enlargement methods and their impact on the performance of a novel architecture, called Fully Convolutional DenseResNet (FC-DRN).

By: Arantxa Casanova, Guillem Cucurull, Michal Drozdzal, Adriana Romero, Yoshua Bengio
June 18, 2018

A Two-Step Disentanglement Method

Computer Vision and Pattern Recognition (CVPR)

We address the problem of disentanglement of factors that generate a given data into those that are correlated with the labeling and those that are not.

By: Naama Hadad, Lior Wolf, Moni Shahar
June 18, 2018

DensePose: Dense Human Pose Estimation In The Wild

Computer Vision and Pattern Recognition (CVPR)

In this work we establish dense correspondences between an RGB image and a surface-based representation of the human body, a task we refer to as dense human pose estimation. We gather dense correspondences for 50K persons appearing in the COCO dataset by introducing an efficient annotation pipeline. We then use our dataset to train CNN-based systems that deliver dense correspondence ‘in the wild’, namely in the presence of background, occlusions and scale variations.

By: Riza Alp Guler, Natalia Neverova, Iasonas Kokkinos