Research Area
Year Published

626 Results

April 24, 2017

Learning through Dialogue Interactions by Asking Questions

International Conference on Learning Representations (ICLR) 2017

In this work, we explore a dialogue agents ability to interact with users by both responding to questions and by asking questions, and importantly to learn from both types of interaction, by designing a simulator and a set of synthetic tasks in the movie domain that allow such interactions between a learner and a teacher.

By: Jiwei Li, Alexander Miller, Sumit Chopra, Marc'Aurelio Ranzato, Jason Weston
April 24, 2017

Dialogue Learning with Human-in-the-Loop

International Conference on Learning Representations (ICLR) 2017

In this paper we explore interacting with a dialogue partner in a reinforcement learning setting where the bot improves its question-answering ability from feedback a teacher gives following its generated responses.

By: Jiwei Li, Alexander Miller, Sumit Chopra, Marc'Aurelio Ranzato, Jason Weston
April 24, 2017

Training Agent for First-Person Shooter Game With Actor-Critic Curriculum Learning

International Conference on Learning Representations (ICLR) 2017

In this paper, we propose a new framework for training vision-based agent for First-Person Shooter (FPS) Game, in particular Doom.

By: Yuxin Wu, Yuandong Tian
April 24, 2017

Unsupervised Cross-Domain Image Generation

International Conference on Learning Representations (ICLR) 2017

We study the problem of transferring a sample in one domain to an analog sample in another domain. Given two related domains, S and T, we would like to learn a generative function G that maps an input sample from S to the domain T, such that the output of a given representation function f, which accepts inputs in either domains, would remain unchanged.

By: Yaniv Taigman, Adam Polyak, Lior Wolf
April 24, 2017

An Analytical Formula of Population Gradient for Two-Layered ReLU network and its Applications in Convergence and Critical Point Analysis

International Conference on Learning Representations (ICLR) 2017

In this paper, we explore theoretical properties of training a two-layered ReLU network g(x; w) = PK j=1 σ(w | j x) with centered d-dimensional spherical Gaussian input x (σ=ReLU). We train our network with gradient descent on w to mimic the output of a teacher network with the same architecture and fixed parameters w∗.

By: Yuandong Tian
April 24, 2017

Connective recovery in social networks after the death of a friend

Nature Human Behavior

Most individuals have few close friends, leading to potential isolation after a friend’s death. Do social networks heal to fill the space left by the loss? We conduct such a study of self-healing and resilience in social networks.

By: William Hobbs, Moira Burke
April 24, 2017

LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation

International Conference on Learning Representations (ICLR)

We present LR-GAN: an adversarial image generation model which takes scene structure and context into account.

By: Jianwei Yang, Anitha Kannan, Dhruv Batra, Devi Parikh
April 24, 2017

Towards Principled Methods for Training Generative Adversarial Networks

International Conference on Learning Representations (ICLR) 2017

The goal of this paper is not to introduce a single algorithm or method, but to make theoretical steps towards fully understanding the training dynamics of generative adversarial networks.

By: Martin Arjovsky, Leon Bottou
April 24, 2017

Improving Neural Language Models with a Continuous Cache

International Conference on Learning Representations (ICLR) 2017

We propose an extension to neural network language models to adapt their prediction to the recent history. Our model is a simplified version of memory augmented networks, which stores past hidden activations as memory and accesses them through a dot product with the current hidden activation.

By: Edouard Grave, Armand Joulin, Nicolas Usunier
April 24, 2017

Revisiting Classifier Two-Sample Tests for GAN Evaluation and Causal Discovery

International Conference on Learning Representations (ICLR) 2017

In this paper, we aim to revive interest in the use of binary classifiers for two-sample testing. To this end, we review their fundamentals, previous literature on their use, compare their performance against alternative state-of-the-art two-sample tests, and propose them to evaluate generative adversarial network models applied to image synthesis.

By: David Lopez-Paz, Maxime Oquab