All Research Areas
Research Areas
Year Published

484 Results

July 21, 2017

Learning Features by Watching Objects Move

CVPR 2017

This paper presents a novel yet intuitive approach to unsupervised feature learning. Inspired by the human visual system, we explore whether low-level motion-based grouping cues can be used to learn an effective visual representation.

By: Deepak Pathak, Ross Girshick, Piotr Dollar, Trevor Darrell, Bharath Hariharan
July 21, 2017

Robocodes: Towards Generative Street Addresses from Satellite Imagery

CVPR 2017

This paper describes our automatic generative algorithm to create street addresses (Robocodes) from satellite images by learning and labeling regions, roads, and blocks. 75% of the world lacks street addresses.

By: Ilke Demir, Forest Hughes, Aman Raj, Kleovoulos Tsourides, Divyaa Ravichandran, Suryanarayana Murthy, Kaunil Dhruv, Sanyam Garg, Jatin Malhotra, Barrett Doo, Grace Kermani, Ramesh Raskar
July 21, 2017

Feature Pyramid Networks for Object Detection

CVPR 2017

In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost.

By: Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, Serge Belongie
July 21, 2017

Semantic Amodal Segmentation

CVPR 2017

Common visual recognition tasks such as classification, object detection, and semantic segmentation are rapidly reaching maturity, and given the recent rate of progress, it is not unreasonable to conjecture that techniques for many of these problems will approach human levels of performance in the next few years. In this paper we look to the future: what is the next frontier in visual recognition?

By: Yan Zhu, Yuandong Tian, Dimitris Mexatas, Piotr Dollar
July 21, 2017

Aggregated Residual Transformations for Deep Neural Networks

CVPR 2017

We present a simple, highly modularized network architecture for image classification.

By: Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, Kaiming He
July 21, 2017

Densely Connected Convolutional Networks

CVPR 2017

In this paper, we embrace the observation that hat convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output, and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion.

By: Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger
July 21, 2017

Discovering Causal Signals in Images

CVPR 2017

This paper establishes the existence of observable footprints that reveal the “causal dispositions” of the object categories appearing in collections of images.

By: David Lopez-Paz, Robert Nishihara, Soumith Chintala, Bernhard Scholkopf, Leon Bottou
July 21, 2017

Relationship Proposal Networks

Conference on Computer Vision and Pattern Recognition 2017

In this paper we address the challenges of image scene object recognition by using pairs of related regions in images to train a relationship proposer that at test time produces a manageable number of related regions.

By: Ji Zhang, Mohamed Elhoseiny, Scott Cohen, Walter Chang, Ahmed Elgammal
July 21, 2017

Proton Testing Results for Kaman KD-5100 Differential Inductive Position Measuring Systems

Journal, IEEE Radiation Effects Data Workshop (REDW)

We report proton testing of a position measuring system, the Kaman KD-5100, with applications including mirror positioning for laser beam control. We measure a device response likely due to total ionizing dose and/or displacement damage.

By: Bart McGuyer, Randall Milanowski, Slaven Moro, Norman Hall, Bert Vermeire
July 18, 2017

Patient-Driven Privacy through Generalized Distillation

Privacy Enhancing Technologies Symposium (PETS)

The introduction of data analytics into medicine has changed the nature of patient treatment. In this, patients are asked to disclose personal information such as genetic markers, lifestyle habits, and clinical history. This data is then used by statistical models to predict personalized treatments. However, due to privacy concerns, patients often desire to withhold sensitive information. This self-censorship can impede proper diagnosis and treatment, which may lead to serious health complications and even death over time. In this paper, we present privacy distillation, a mechanism which allows patients to control the type and amount of information they wish to disclose to the healthcare providers for use in statistical models.

By: Z. Berkay Celik, David Lopez-Paz, Patrick McDaniel