Pacing Equilibrium in First Price Auction Markets

Management Science


Mature internet advertising platforms offer high-level campaign management tools to help advertisers run their campaigns, often abstracting away the intricacies of how each ad is placed and focusing on aggregate metrics of interest to advertisers. On such platforms, advertisers often participate in auctions through a proxy bidder, so the standard incentive analyses that are common in the literature do not apply directly. In this paper, we take the perspective of a budget management system that surfaces aggregated incentives—instead of individual auctions—and compare first and second price auctions. We show that theory offers surprising endorsement for using a first price auction to sell individual impressions. In particular, first price auctions guarantee uniqueness of the steady-state equilibrium of the budget management system, monotonicity, and other desirable properties, as well as efficient computation through the solution to the well-studied Eisenberg-Gale convex program. Contrary to what one can expect from first price auctions, we show that incentives issues are not a barrier that undermines the system. Using realistic instances generated from data collected at real-world auction platforms, we show that bidders have small regret with respect to their optimal ex-post strategy, and they do not have a big incentive to misreport when they can influence equilibria directly by giving inputs strategically. Finally, budget-constrained bidders, who have significant prevalence in real-world platforms, tend to have smaller regrets. Our computations indicate that bidder budgets, pacing multipliers and regrets all have a positive association in statistical terms.

Related Publications

All Publications

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

UAI - July 27, 2021

Measuring Data Leakage in Machine-Learning Models with Fisher Information

Awni Hannun, Chuan Guo, Laurens van der Maaten

arXiv - January 29, 2020

fastMRI: An Open Dataset and Benchmarks for Accelerated MRI

Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang, Matthew J. Muckley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno, Marc Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao Zhang, Michal Drozdzal, Adriana Romero, Michael Rabbat, Pascal Vincent, Nafissa Yakubova, James Pinkerton, Duo Wang, Erich Owens, Larry Zitnick, Michael P. Recht, Daniel K. Sodickson, Yvonne W. Lui

NeurIPS - December 6, 2021

CRYPTEN: Secure Multi-Party Computation Meets Machine Learning

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, Laurens van der Maaten

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy