Publication

Optimization Methods for Large-Scale Machine Learning

SIAM Review


Abstract

This paper provides a review and commentary on the past, present, and future of numerical optimization algorithms in the context of machine learning applications. Through case studies on text classification and the training of deep neural networks, we discuss how optimization problems arise in machine learning and what makes them challenging. A major theme of our study is that large-scale machine learning represents a distinctive setting in which the stochastic gradient (SG) method has traditionally played a central role while conventional gradient-based nonlinear optimization techniques typically falter. Based on this viewpoint, we present a comprehensive theory of a straightforward, yet versatile SG algorithm, discuss its practical behavior, and highlight opportunities for designing algorithms with improved performance. This leads to a discussion about the next generation of optimization methods for large-scale machine learning, including an investigation of two main streams of research on techniques that diminish noise in the stochastic directions and methods that make use of second-order derivative approximations.

Related Publications

All Publications

Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction

Qingquan Song, Dehua Cheng, Eric Zhou, Jiyan Yang, Yuandong Tian, Xia Hu

KDD - August 1, 2020

Vid2Game: Controllable Characters Extracted from Real-World Videos

Oran Gafni, Lior Wolf, Yaniv Taigman

ICLR - March 10, 2020

Word-level Speech Recognition with a Letter to Word Encoder

Ronan Collobert, Awni Hannun, Gabriel Synnaeve

ICML - July 13, 2020

Compositionality and Generalization in Emergent Languages

Rahma Chaabouni, Eugene Kharitonov, Diane Bouchacourt, Emmanuel Dupoux, Marco Baroni

ACL - July 4, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy