Publication

Online Selection of Diverse Committees

International Joint Conferences on Artificial Intelligence (IJCAI)


Abstract

Citizens’ assemblies need to represent subpopulations according to their proportions in the general population. These large committees are often constructed in an online fashion by contacting people, asking for the demographic features of the volunteers, and deciding to include them or not. This raises a trade-off between the number of people contacted (and the incurring cost) and the representativeness of the committee. We study three methods, theoretically and experimentally: a greedy algorithm that includes volunteers as long as proportionality is not violated; a non-adaptive method that includes a volunteer with a probability depending only on their features, assuming that the joint feature distribution in the volunteer pool is known; and a reinforcement learning based approach when this distribution is not known a priori but learnt online.

Related Publications

All Publications

UAI - July 28, 2021

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger

ACM MM - October 20, 2021

EVRNet: Efficient Video Restoration on Edge Devices

Sachin Mehta, Amit Kumar, Fitsum Reda, Varun Nasery, Vikram Mulukutla, Rakesh Ranjan, Vikas Chandra

ICCV - October 11, 2021

Egocentric Pose Estimation from Human Vision Span

Hao Jiang, Vamsi Krishna Ithapu

TSE - June 29, 2021

Learning From Mistakes: Machine Learning Enhanced Human Expert Effort Estimates

Federica Sarro, Rebecca Moussa, Alessio Petrozziello, Mark Harman

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy