Publication

One Trillion Edges: Graph Processing at Facebook-Scale

The 41st International Conference on Very Large Data Bases


Abstract

Analyzing large graphs provides valuable insights for social networking and web companies in content ranking and recommendations. While numerous graph processing systems have been developed and evaluated on available benchmark graphs of up to 6.6B edges, they often face significant difficulties in scaling to much larger graphs. Industry graphs can be two orders of magnitude larger hundreds of billions or up to one trillion edges. In addition to scalability challenges, real world applications often require much more complex graph processing workflows than previously evaluated. In this paper, we describe the usability, performance, and scalability improvements we made to Apache Giraph, an open-source graph processing system, in order to use it on Facebook-scale graphs of up to one trillion edges. We also describe several key extensions to the original Pregel model that make it possible to develop a broader range of production graph applications and workflows as well as improve code reuse. Finally, we report on real-world operations as well as performance characteristics of several large-scale production applications.

Related Publications

All Publications

International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE) - September 26, 2021

Behavioural and Structural Imitation Models in Facebook’s WW Simulation System

John Ahlgren, Kinga Bojarczuk, Inna Dvortsova, Mark Harman, Rayan Hatout, Maria Lomeli, Erik Meijer, Silvia Sapora

ESEM - September 23, 2021

Measurement Challenges for Cyber Cyber Digital Twins: Experiences from the Deployment of Facebook’s WW Simulation System

Kinga Bojarczuk, Inna Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Maria Lomeli, Simon Mark Lucas, Erik Meijer, Rubmary Rojas, Silvia Sapora

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

TSE - June 29, 2021

Learning From Mistakes: Machine Learning Enhanced Human Expert Effort Estimates

Federica Sarro, Rebecca Moussa, Alessio Petrozziello, Mark Harman

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy