Publication

One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers

Neural Information Processing Systems (NeurIPS)


Abstract

The success of lottery ticket initializations [7] suggests that small, sparsified networks can be trained so long as the network is initialized appropriately. Unfortunately, finding these “winning ticket” initializations is computationally expensive. One potential solution is to reuse the same winning tickets across a variety of datasets and optimizers. However, the generality of winning ticket initializations remains unclear. Here, we attempt to answer this question by generating winning tickets for one training configuration (optimizer and dataset) and evaluating their performance on another configuration. Perhaps surprisingly, we found that, within the natural images domain, winning ticket initializations generalized across a variety of datasets, including Fashion MNIST, SVHN, CIFAR-10/100, ImageNet, and Places365, often achieving performance close to that of winning tickets generated on the same dataset. Moreover, winning tickets generated using larger datasets consistently transferred better than those generated using smaller datasets. We also found that winning ticket initializations generalize across optimizers with high performance. These results suggest that winning ticket initializations generated by sufficiently large datasets contain inductive biases generic to neural networks more broadly which improve training across many settings and provide hope for the development of better initialization methods.

Related Publications

All Publications

Interspeech - October 12, 2021

LiRA: Learning Visual Speech Representations from Audio through Self-supervision

Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, Maja Pantic

CVPR - June 20, 2021

Temporally-Weighted Hierarchical Clustering for Unsupervised Action Segmentation

M. Saquib Sarfraz, Naila Murray, Vivek Sharma, Ali Diba, Luc Van Gool, Rainer Stiefelhagen

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

3DV - November 18, 2021

Recovering Real-World Reflectance Properties and Shading From HDR Imagery

Bjoern Haefner, Simon Green, Alan Oursland, Daniel Andersen, Michael Goesele, Daniel Cremers, Richard Newcombe, Thomas Whelan

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy