One-Sided Unsupervised Domain Mapping

Neural Information Processing Systems (NIPS)


In unsupervised domain mapping, the learner is given two unmatched datasets A and B. The goal is to learn a mapping GAB that translates a sample in A to the analog sample in B. Recent approaches have shown that when learning simultaneously both GAB and the inverse mapping GBA, convincing mappings are obtained. In this work, we present a method of learning GAB without learning GBA. This is done by learning a mapping that maintains the distance between a pair of samples. Moreover, good mappings are obtained, even by maintaining the distance between different parts of the same sample before and after mapping. We present experimental results that the new method not only allows for one sided mapping learning, but also leads to preferable numerical results over the existing circularity-based constraint. Our entire code isĀ publicly available.

Related Publications

All Publications

NeurIPS - December 6, 2020

High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization

Qing Feng, Benjamin Letham, Hongzi Mao, Eytan Bakshy

Innovative Technology at the Interface of Finance and Operations - March 31, 2021

Market Equilibrium Models in Large-Scale Internet Markets

Christian Kroer, Nicolas E. Stier-Moses

Human Interpretability Workshop at ICML - July 17, 2020

Investigating Effects of Saturation in Integrated Gradients

Vivek Miglani, Bilal Alsallakh, Narine Kokhlikyan, Orion Reblitz-Richardson

ICASSP - June 6, 2021

Multi-Channel Speech Enhancement Using Graph Neural Networks

Panagiotis Tzirakis, Anurag Kumar, Jacob Donley

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy