Publication

On the Distribution of Deep Clausal Embeddings: A Large Cross-linguistic Study

Association for Computational Linguistics (ACL)


Abstract

Embedding a clause inside another (“the girl [who likes cars [that run fast]] has arrived”) is a fundamental resource that has been argued to be a key driver of linguistic expressiveness. As such, it plays a central role in fundamental debates on what makes human language unique, and how they might have evolved. Empirical evidence on the prevalence and the limits of embeddings has however been based on either laboratory setups or corpus data of relatively limited size. We introduce here a collection of large, dependency-parsed written corpora in 17 languages, that allow us, for the first time, to capture clausal embedding through dependency graphs and assess their distribution. Our results indicate that there is no evidence for hard constraints on embedding depth: the tail of depth distributions is heavy. Moreover, although deeply embedded clauses tend to be shorter, suggesting processing load issues, complex sentences with many embeddings do not display a bias towards less deep embeddings. Taken together, the results suggest that deep embeddings are not disfavored in written language. More generally, our study illustrates how resources and methods from latest-generation big-data NLP can provide new perspectives on fundamental questions in theoretical linguistics.

Related Publications

All Publications

COLING - December 8, 2020

Best Practices for Data-Efficient Modeling in NLG: How to Train Production-Ready Neural Models with Less Data

Ankit Arun, Soumya Batra, Vikas Bhardwaj, Ashwini Challa, Pinar Donmez, Peyman Heidari, Hakan Inan, Shashank Jain, Anuj Kumar, Shawn Mei, Karthik Mohan, Michael White

NeurIPS - December 1, 2020

Continuous Surface Embeddings

Natalia Neverova, David Novotny, Vasil Khalidov, Marc Szafraniec, Patrick Labatut, Andrea Vedaldi

NeurIPS - November 25, 2020

Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian

Jack Parker-Holder, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer, Alistair Letcher, Alex Peysakhovich, Aldo Pacchiano, Jakob Foerster

NeurIPS - December 7, 2020

Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees

Shali Jiang, Daniel Jiang, Max Balandat, Brian Karrer, Jacob R. Gardner, Roman Garnett

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy