Object Level Visual Reasoning in Videos

European Conference on Computer Vision (ECCV)


Human activity recognition is typically addressed by training models to detect key concepts like global and local motion, features related to object classes present in the scene, as well as features related to the global context. The next open challenges in activity recognition require a level of understanding that pushes beyond this, requiring fine distinctions and a detailed comprehension of the interactions between actors and objects in a scene. We propose a model capable of learning to reason about semantically meaningful spatio-temporal interactions in videos. Key to our approach is the choice of performing this reasoning on an object level through the integration of state of the art object instance segmentation networks. This allows the model to learn detailed spatial interactions that exist at a semantic, object-interaction relevant level. We evaluated our method on three standard datasets: the TwentyBN Something-Something dataset, the VLOG dataset and the EPIC Kitchens dataset, and achieve state of the art results on both. Finally, we also show visualizations of the interactions learned by the model, which illustrate object classes and their interactions corresponding to different activity classes.

Related Publications

All Publications

Interspeech - October 12, 2021

LiRA: Learning Visual Speech Representations from Audio through Self-supervision

Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, Maja Pantic

CVPR - June 20, 2021

Temporally-Weighted Hierarchical Clustering for Unsupervised Action Segmentation

M. Saquib Sarfraz, Naila Murray, Vivek Sharma, Ali Diba, Luc Van Gool, Rainer Stiefelhagen

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

3DV - November 18, 2021

Recovering Real-World Reflectance Properties and Shading From HDR Imagery

Bjoern Haefner, Simon Green, Alan Oursland, Daniel Andersen, Michael Goesele, Daniel Cremers, Richard Newcombe, Thomas Whelan

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy