Publication

OASIs: Oracle Assessment and Improvement Tool

International Symposium on Software Testing and Analysis (ISSTA)


Abstract

The oracle problem remains one of the key challenges in software testing, for which little automated support has been developed so far. We introduce OASIs, a search-based tool for Java that assists testers in oracle assessment and improvement. It does so by combining test case generation to reveal false positives and mutation testing to reveal false negatives. In this work, we describe how OASIs works, provide details of its implementation, and explain how it can be used in iterative oracle improvement process with a human in the loop. Finally we present a summary of an empirical evaluation showing that the fault detection rate of the oracles after improvement using OASIs increases, on average, by 48.6%.

Related Publications

All Publications

SIGDIAL - August 1, 2021

Annotation Inconsistency and Entity Bias in MultiWOZ

Kun Qian, Ahmad Berrami, Zhouhan Lin, Ankita De, Alborz Geramifard, Zhou Yu, Chinnadhurai Sankar

Uncertainty and Robustness in Deep Learning Workshop at ICML - August 1, 2020

Tilted Empirical Risk Minimization

Tian Li, Ahmad Beirami, Maziar Sanjabi, Virginia Smith

arxiv - November 1, 2020

The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Pratik Ringshia, Davide Testuggine

ICML - July 24, 2021

Using Bifurcations for Diversity in Differentiable Games

Jonathan Lorraine, Jack Parker-Holder, Paul Vicol, Aldo Pacchiano, Luke Metz, Tal Kachman, Jakob Foerster

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy