Numerical simulations of near-field head-related transfer functions: Magnitude verification and validation with laser spark sources

Journal of the Acoustical Society of America


Despite possessing an increased perceptual significance, near-field head-related transfer functions (nf-HRTFs) are more difficult to acquire compared to far-field head-related transfer functions. If properly validated, numerical simulations could be employed to estimate nf-HRTFs: the present study aims to validate the usage of wave-based simulations in the near-field. A thorough validation study is designed where various sources of error are investigated and controlled. The present work proposes the usage of a highly-omnidirectional laser-induced breakdown (LIB) of air as an acoustic point source in nf-HRTF measurements. Despite observed departures from the linear regime of the LIB pressure pulse, the validation results show that asymptotically-estimated solutions to a lossless model (wave-equation and rigid boundaries) agree in magnitude with the LIB-measured nf-HRTF of a rigid head replica approximately within 1–2 dB up to about 17 kHz. Except a decreased reliability in notch estimation, no significant shortcoming of the continuous model is found relative to the measurements below 17 kHz. The study also shows the difficulty in obtaining accurate surface boundary impedance values for accurate validation studies.

Related Publications

All Publications

Compacted CPU/GPU Data Compression via Modified Virtual Address Translation

Larry Seiler, Daqi Lin, Cem Yuksel

High Performance Graphics - August 15, 2020

A Hybrid Active-Passive Actuation and Control Approach for Kinesthetic Handheld Haptics

Patrick Dills, Nick Colonnese, Priyanshu Agarwal, Michael Zinn

Haptics Symposium - May 12, 2020

Quadratic Approximation of Cubic Curves

Nghia Truong, Cem Yuksel, Larry Seiler

High Performance Graphics - August 15, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy