Publication

Neuro-Symbolic Generative Art: A Preliminary Study

International Conference on Computational Creativity (ICCC)


Abstract

There are two classes of generative art approaches: neural, where a deep model is trained to generate samples from a data distribution, and “symbolic” or algorithmic, where an artist designs the primary parameters and an autonomous system generates samples within these constraints. In this work, we propose a new hybrid genre: neuro-symbolic generative art. As a preliminary study, we train a generative deep neural network on samples from the symbolic approach. We demonstrate through human studies that subjects find the final artifacts and the creation process using our neurosymbolic approach to be more creative than the symbolic approach 61% and 82% of the time respectively.

Related Publications

All Publications

Unsupervised Translation of Programming Languages

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, Guillaume Lample

NeurIPS - December 1, 2020

Acustico: Surface Tap Detection and Localization using Wrist-based Acoustic TDOA Sensing

Jun Gong, Aakar Gupta, Hrvoje Benko

ACM UIST - October 19, 2020

Learning Reasoning Strategies in End-to-End Differentiable Proving

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, Tim Rocktäschel

ICML - August 13, 2020

Voice Separation with an Unknown Number of Multiple Speakers

Eliya Nachmani, Yossi Adi, Lior Wolf

ICML - October 1, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy