Publication

Neural Supersampling for Real-time Rendering

ACM SIGGRAPH


Abstract

Due to higher resolutions and refresh rates, as well as more photorealistic effects, real-time rendering has become increasingly challenging for video games and emerging virtual reality headsets. To meet this demand, modern graphics hardware and game engines often reduce the computational cost by rendering at a lower resolution and then upsampling to the native resolution. Following the recent advances in image and video superresolution in computer vision, we propose a machine learning approach that is specifically tailored for high-quality upsampling of rendered content in real-time applications. The main insight of our work is that in rendered content, the image pixels are point-sampled, but precise temporal dynamics are available. Our method combines this specific information that is typically available in modern renderers (i.e., depth and dense motion vectors) with a novel temporal network design that takes into account such specifics and is aimed at maximizing video quality while delivering real-time performance. By training on a large synthetic dataset rendered from multiple 3D scenes with recorded camera motion, we demonstrate high fidelity and temporally stable results in real-time, even in the highly challenging 4 × 4 upsampling scenario, significantly outperforming existing superresolution and temporal antialiasing work.

Read more about our research in this blog post.

Click to Download Video

Click to Download Supplementary Material

Related Publications

All Publications

ECCV - August 24, 2020

Geometric Correspondence Fields: Learned Differentiable Rendering for 3D Pose Refinement in the Wild

Alexander Grabner, Yaming Wang, Peizhao Zhang, Peihong Guo, Tong Xiao, Peter Vajda, Peter M. Roth, Vincent Lepetit

Ethnographic Praxis In Industry Conference (EPIC) Workshop at ICCV - October 17, 2021

How You Move Your Head Tells What You Do: Self-supervised Video Representation Learning with Egocentric Cameras and IMU Sensors

Satoshi Tsutsui, Ruta Desai, Karl Ridgeway

Workshop on Online Abuse and Harms (WHOAH) at ACL - November 30, 2021

Findings of the WOAH 5 Shared Task on Fine Grained Hateful Memes Detection

Lambert Mathias, Shaoliang Nie, Bertie Vidgen, Aida Davani, Zeerak Waseem, Douwe Kiela, Vinodkumar Prabhakaran

Journal of Big Data - November 6, 2021

A graphical method of cumulative differences between two subpopulations

Mark Tygert

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy