Neural Spatio-Temporal Point Processes

International Conference on Learning Representations (ICLR)


We propose a new class of parameterizations for spatio-temporal point processes which leverage Neural ODEs as a computational method and enable flexible, high-fidelity models of discrete events that are localized in continuous time and space. Central to our approach is a combination of recurrent continuous-time neural networks with two novel neural architectures, i.e., Jump and Attentive Continuous-time Normalizing Flows. This approach allows us to learn complex distributions for both the spatial and temporal domain and to condition non-trivially on the observed event history. We validate our models on data sets from a wide variety of contexts such as seismology, epidemiology, urban mobility, and neuroscience.

Related Publications

All Publications

AISTATS - April 13, 2021

Continual Learning using a Bayesian Nonparametric Dictionary of Weight Factors

Nikhil Mehta, Kevin J Liang, Vinay K Verma, Lawrence Carin

NeurIPS - December 6, 2020

Improved Sample Complexity for Incremental Autonomous Exploration in MDPs

Jean Tarbouriech, Matteo Pirotta, Michal Valko, Alessandro Lazaric

NeurIPS - December 7, 2020

Labelling unlabelled videos from scratch with multi-modal self-supervision

Yuki M. Asano, Mandela Patrick, Christian Rupprecht, Andrea Vedaldi

NeurIPS - December 7, 2020

Adversarial Example Games

Avishek Joey Bose, Gauthier Gidel, Hugo Berard, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy