Publication

Neural Network-Based Word Alignment through Score Aggregation

Association for Computational Linguistics Conference on Machine Translation


Abstract

We present a simple neural network for word alignment that builds source and target word window representations to compute alignment scores for sentence pairs. To enable unsupervised training, we use an aggregation operation that summarizes the alignment scores for a given target word. A soft-margin objective increases scores for true target words while decreasing scores for target words that are not present. Compared to the popular Fast Align model, our approach improves alignment accuracy by 7 AER on English-Czech, by 6 AER on Romanian-English and by 1.7 AER on English-French alignment.

Related Publications

All Publications

Growing Action Spaces

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve

July 14, 2020

Stochastic Hamiltonian Gradient Methods for Smooth Games

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas

ICML - July 12, 2020

Invariant Causal Prediction for Block MDPs

Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin Gal, Doina Precup

ICML - July 14, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy