Network Topology and Communication-Computation Tradeoffs in Decentralized Optimization

Proceedings of the IEEE


In decentralized optimization, nodes cooperate to minimize an overall objective function that is the sum (or average) of per-node private objective functions. Algorithms interleave local computations with communication among all or a subset of the nodes. Motivated by a variety of applications—decentralized estimation in sensor networks, fitting models to massive data sets, and decentralized control of multi-robot systems, to name a few—significant advances have been made towards the development of robust, practical algorithms with theoretical performance guarantees. This paper presents an overview of recent work in this area. In general, rates of convergence depend not only on the number of nodes involved and the desired level of accuracy, but also on the structure and nature of the network over which nodes communicate (e.g., whether links are directed or undirected, static or time-varying). We survey the state-of-the-art algorithms and their analyses tailored to these different scenarios, highlighting the role of the network topology.

Related Publications

All Publications

Spatially Aware Multimodal Transformers for TextVQA

Yash Kant, Dhruv Batra, Peter Anderson, Alexander Schwing, Devi Parikh, Jiasen Lu, Harsh Agrawal

ECCV - August 23, 2020

Perceiving 3D Human-Object Spatial Arrangements from a Single Image in the Wild

Jason Y. Zhang, Sam Pepose, Hanbyul Joo, Deva Ramanan, Jitendra Malik, Angjoo Kanazawa

ECCV - August 23, 2020

ContactPose: A Dataset of Grasps with Object Contact and Hand Pose

Samarth Brahmbhatt, Chengcheng Tang, Christopher D. Twigg, Charles C. Kemp, James Hays

ECCV - August 23, 2020

Learning to Generate Grounded Visual Captions without Localization Supervision

Chih-Yao Ma, Yannis Kalantidis, Ghassan AlRegib, Peter Vajda, Marcus Rohrbach, Zsolt Kira

ECCV - August 24, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy