Publication

Network Topology and Communication-Computation Tradeoffs in Decentralized Optimization

Proceedings of the IEEE


Abstract

In decentralized optimization, nodes cooperate to minimize an overall objective function that is the sum (or average) of per-node private objective functions. Algorithms interleave local computations with communication among all or a subset of the nodes. Motivated by a variety of applications—decentralized estimation in sensor networks, fitting models to massive data sets, and decentralized control of multi-robot systems, to name a few—significant advances have been made towards the development of robust, practical algorithms with theoretical performance guarantees. This paper presents an overview of recent work in this area. In general, rates of convergence depend not only on the number of nodes involved and the desired level of accuracy, but also on the structure and nature of the network over which nodes communicate (e.g., whether links are directed or undirected, static or time-varying). We survey the state-of-the-art algorithms and their analyses tailored to these different scenarios, highlighting the role of the network topology.

Related Publications

All Publications

A Scalable Approach to Control Diverse Behaviors for Physically Simulated Characters

Jungdam Won, Deepak Gopinath, Jessica Hodgins

ACM SIGGRAPH - July 19, 2020

ARCH: Animatable Reconstruction of Clothed Humans

Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, Tony Tung

CVPR - June 15, 2020

In Defense of Grid Features for Visual Question Answering

Huaizu Jiang, Ishan Misra, Marcus Rohrbach, Erik Learned-Miller, Xinlei Chen

CVPR - June 14, 2020

Hierarchical Scene Coordinate Classification and Regression for Visual Localization

Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, Juho Kannala

CVPR - June 13, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy