MVFST-RL: An Asynchronous RL Framework for Congestion Control with Delayed Actions

Workshop on ML for Systems at NeurIPS


Effective network congestion control strategies are key to keeping the Internet (or any large computer network) operational. Network congestion control has been dominated by hand-crafted heuristics for decades. Recently, Reinforcement Learning (RL) has emerged as an alternative to automatically optimize such control strategies. Research so far has primarily considered RL interfaces which block the sender while an agent considers its next action. This is largely an artifact of building on top of frameworks designed for RL in games (e.g. OpenAI Gym). However, this does not translate to real-world networking environments, where a network sender waiting on a policy without sending data leads to under-utilization of bandwidth. We instead propose to formulate congestion control with an asynchronous RL agent that handles delayed actions. We present MVFST-RL, a scalable framework for congestion control in the QUIC transport protocol that leverages state-of-the-art in asynchronous RL training with off-policy correction. We analyze modeling improvements to mitigate the deviation from Markovian dynamics, and evaluate our method on emulated networks from the Pantheon benchmark platform. The source code is publicly available at

Related Publications

All Publications

DELF: Safeguarding deletion correctness in Online Social Networks

Katriel Cohn-Gordon, Georgios Damaskinos, Divino Neto, Joshi Cordova, Benoît Reitz, Benjamin Strahs, Daniel Obenshain, Paul Pearce, Ioannis Papagiannis

USENIX Security - August 11, 2020

Towards Generalization Across Depth for Monocular 3D Object Detection

Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi, Elisa Ricci, Peter Kontschieder

ECCV - August 22, 2020

The Mapillary Traffic Sign Dataset for Detection and Classification on a Global Scale

Christian Ertler, Jerneja Mislej, Tobias Ollmann, Lorenzo Porzi, Gerhard Neuhold, Yubin Kuang

ECCV - August 23, 2020

Spatially Aware Multimodal Transformers for TextVQA

Yash Kant, Dhruv Batra, Peter Anderson, Alexander Schwing, Devi Parikh, Jiasen Lu, Harsh Agrawal

ECCV - August 23, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy