Publication

Multilingual seq2seq training with similarity loss for cross-lingual document classification

RepL4NLP Workshop at ACL


Abstract

In this paper we continue the line of work where neural machine translation training is used to produce joint cross-lingual fixed-dimensional sentence embeddings. In this framework we introduce a simple method of adding a loss to the learning objective which penalizes distance between representations of bilingually aligned sentences. We evaluate cross-lingual transfer using two approaches, cross-lingual similarity search on an aligned corpus (Europarl) and cross-lingual document classification on a recently published benchmark Reuters corpus, and we find the similarity loss significantly improves performance on both. Our cross-lingual transfer performance is competitive with state-of-the-art, even while there is potential to further improve by investing in a better in-language baseline. Our results are based on a set of 6 European languages.

Related Publications

All Publications

Electronics (MDPI) Journal - November 4, 2021

Performance Evaluation of Offline Speech Recognition on Edge Devices

Santosh Gondi, Vineel Pratap

NeurIPS - December 6, 2021

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement

Samuel Daulton, Maximilian Balandat, Eytan Bakshy

EMNLP Conference on Machine Translation (WMT) - October 1, 2020

BERGAMOT-LATTE Submissions for the WMT20 Quality Estimation Shared Task

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Vishrav Chaudhary, Mark Fishel, Francisco Guzmán, Lucia Specia

Electronics (MDPI) Journal - November 10, 2021

Performance and Efficiency Evaluation of ASR Inference on the Edge

Santosh Gondi, Vineel Pratap

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookie Policy