Publication

Multi-Dimensional Balanced Graph Partitioning via Projected Gradient Descent

International Conference on Very Large Databases (VLDB)


Abstract

Motivated by performance optimization of large-scale graph processing systems that distribute the graph across multiple machines, we consider the balanced graph partitioning problem. Compared to most of the previous work, we study the multi-dimensional variant in which balance according to multiple weight functions is required. As we demonstrate by experimental evaluation, such multi-dimensional balance is essential for achieving performance improvements for typical distributed graph processing workloads.

We propose a new scalable technique for the multi-dimensional balanced graph partitioning problem. It is based on applying randomized projected gradient descent to a non-convex continuous relaxation of the objective. We show how to implement the new algorithm efficiently in both theory and practice utilizing various approaches for the projection step. Experiments with large-scale graphs containing up to hundreds of billions of edges indicate that our algorithm has superior performance compared to the state of the art.

Related Publications

All Publications

NeurIPS - December 16, 2020

Online Bayesian Persuasion

Matteo Castiglioni, Andrea Celli, Alberto Marchesi, Nicola Gatti

MLSys - March 1, 2020

Predictive Precompute with Recurrent Neural Networks

Hanson Wang, Zehui Wang, Yuanyuan Ma

WINE - December 7, 2020

The Ad Types Problem

Riccardo Colini Baldeschi, Julian Mestre, Okke Schrijvers, Christopher A. Wilkens

NBER - September 30, 2020

The Effects of COVID-19 on U.S. Small Businesses: Evidence from Owners, Managers, and Employees

Georgij Alekseev, Safaa Amer, Manasa Gopal, Theresa Kuchler, JW Schneider, Johannes Stroebel, Nils Wernerfelt

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy