Publication

Multi-Dimensional Balanced Graph Partitioning via Projected Gradient Descent

International Conference on Very Large Databases (VLDB)


Abstract

Motivated by performance optimization of large-scale graph processing systems that distribute the graph across multiple machines, we consider the balanced graph partitioning problem. Compared to most of the previous work, we study the multi-dimensional variant in which balance according to multiple weight functions is required. As we demonstrate by experimental evaluation, such multi-dimensional balance is essential for achieving performance improvements for typical distributed graph processing workloads.

We propose a new scalable technique for the multi-dimensional balanced graph partitioning problem. It is based on applying randomized projected gradient descent to a non-convex continuous relaxation of the objective. We show how to implement the new algorithm efficiently in both theory and practice utilizing various approaches for the projection step. Experiments with large-scale graphs containing up to hundreds of billions of edges indicate that our algorithm has superior performance compared to the state of the art.

Related Publications

All Publications

USENIX FAST - February 23, 2021

Facebook’s Tectonic Filesystem: Efficiency from Exascale

Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Zakharov, Abhinav Sharma, Shiva Shankar, Mike Shuey, Richard Wareing, Monika Gangapuram, Guanglei Cao, Christian Preseau, Pratap Singh, Kestutis Patiejunas, JR Tipton, Ethan Katz-Bassett, Wyatt Lloyd

WeCNLP - October 30, 2020

Neural Database Operator Model

James Thorne, Majid Yazdani, Marzieh Saeidi, Sebastian Riedel, Alon Halevy

EC - December 23, 2020

Matching Algorithms for Blood Donation

Duncan C. McElfresh, Christian Kroer, Sergey Pupyrev, Eric Sodomka, Karthik Abinav Sankararaman, Zack Chauvin, Neil Dexter, John P. Dickerson

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy