Publication

Multi-armed Bandits with Cost Subsidy

International Conference on Artificial Intelligence and Statistics (AISTATS)


Abstract

In this paper, we consider a novel variant of the multi-armed bandit (MAB) problem, MAB with cost subsidy, which models many real-life applications where the learning agent has to pay to select an arm and is concerned about optimizing cumulative costs and rewards. We present two applications, intelligent SMS routing problem and ad audience optimization problem faced by several businesses (especially online platforms) and show how our problem uniquely captures key features of these applications. We show that naive generalizations of existing MAB algorithms like Upper Confidence Bound and Thompson Sampling do not perform well for this problem. We then establish fundamental lower bound of Ω(K1/3 T2/3) on the performance of any online learning algorithm for this problem, highlighting the hardness of our problem in comparison to the classical MAB problem (where T is the time horizon and K is the number of arms). We also present a simple variant of explore-then-commit and establish near-optimal regret bounds for this algorithm. Lastly, we perform extensive numerical simulations to understand the behavior of a suite of algorithms for various instances and recommend a practical guide to employ different algorithms.

Related Publications

All Publications

Interspeech - October 12, 2021

LiRA: Learning Visual Speech Representations from Audio through Self-supervision

Pingchuan Ma, Rodrigo Mira, Stavros Petridis, Björn W. Schuller, Maja Pantic

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

ISAAC - December 5, 2021

On the Extended TSP Problem

Julián Mestre, Sergey Pupyrev, Seeun William Umboh

IEEE Transactions on Image Processing Journal - March 9, 2021

Inspirational Adversarial Image Generation

Baptiste Rozière, Morgane Rivière, Olivier Teytaud, Jérémy Rapin, Yann LeCun, Camille Couprie

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy