Publication

Model-Based Meta-Reinforcement Learning for Flight with Suspended Payloads

IEEE Robotics and Automation Letters (RA-L)


Abstract

Transporting suspended payloads is challenging for autonomous aerial vehicles because the payload can cause significant and unpredictable changes to the robot’s dynamics. These changes can lead to suboptimal flight performance or even catastrophic failure. Although adaptive control and learning-based methods can in principle adapt to changes in these hybrid robot-payload systems, rapid mid-flight adaptation to payloads that have a priori unknown physical properties remains an open problem. We propose a meta-learning approach that “learns how to learn” models of altered dynamics within seconds of postconnection flight data. Our experiments demonstrate that our online adaptation approach outperforms non-adaptive methods on a series of challenging suspended payload transportation tasks. Videos and other supplemental material are available on our website: https://sites.google.com/view/meta-rl-for-flight.

Related Publications

All Publications

EMNLP - October 31, 2021

Evaluation Paradigms in Question Answering

Pedro Rodriguez, Jordan Boyd-Graber

ASRU - December 13, 2021

Incorporating Real-world Noisy Speech in Neural-network-based Speech Enhancement Systems

Yangyang Xia, Buye Xu, Anurag Kumar

Uncertainty and Robustness in Deep Learning Workshop at ICML - June 24, 2021

DAIR: Data Augmented Invariant Regularization

Tianjian Huang, Chinnadhurai Sankar, Pooyan Amini, Satwik Kottur, Alborz Geramifard, Meisam Razaviyayn, Ahmad Beirami

IROS - September 1, 2021

Success Weighted by Completion Time: A Dynamics-Aware Evaluation Criteria for Embodied Navigation

Naoki Yokoyama, Sehoon Ha, Dhruv Batra

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy