Publication

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation

SIGGRAPH


Abstract

Natural hand manipulations exhibit complex finger maneuvers adaptive to object shapes and the tasks at hand. Learning dexterous manipulation from data in a brute force way would require a prohibitive amount of examples to effectively cover the combinatorial space of 3D shapes and activities. In this paper, we propose a hand-object spatial representation that can achieve generalization from limited data. Our representation combines the global object shape as voxel occupancies with local geometric details as samples of closest distances. This representation is used by a neural network to regress finger motions from input trajectories of wrists and objects. Specifically, we provide the network with the current finger pose, past and future trajectories, and the spatial representations extracted from these trajectories. The network then predicts a new finger pose for the next frame as an autoregressive model. With a carefully chosen hand-centric coordinate system, we can handle single-handed and two-handed motions in a unified framework. Learning from a small number of primitive shapes and kitchenware objects, the network is able to synthesize a variety of finger gaits for grasping, in-hand manipulation, and bimanual object handling on a rich set of novel shapes and functional tasks. We also demonstrate a live demo of manipulating virtual objects in real-time using a simple physical prop. Our system is useful for offline animation or real-time applications forgiving to a small delay.

Related Publications

All Publications

Uncertainty and Robustness in Deep Learning Workshop at ICML - August 1, 2020

Tilted Empirical Risk Minimization

Tian Li, Ahmad Beirami, Maziar Sanjabi, Virginia Smith

arxiv - November 1, 2020

The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Pratik Ringshia, Davide Testuggine

ICML - July 24, 2021

Using Bifurcations for Diversity in Differentiable Games

Jonathan Lorraine, Jack Parker-Holder, Paul Vicol, Aldo Pacchiano, Luke Metz, Tal Kachman, Jakob Foerster

IEEE WHC - July 6, 2021

Hasti: Haptic and Audio Synthesis for Texture Interactions

Sonny Chan, Chase Tymms, Nicholas Colonnese

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy