Publication

Machine Learning at Facebook: Understanding Inference at the Edge

IEEE International Symposium on High-Performance Computer Architecture (HPCA)


Abstract

At Facebook, machine learning provides a wide range of capabilities that drive many aspects of user experience including ranking posts, content understanding, object detection and tracking for augmented and virtual reality, speech and text translations. While machine learning models are currently trained on customized datacenter infrastructure, Facebook is working to bring machine learning inference to the edge. By doing so, user experience is improved with reduced latency (inference time) and becomes less dependent on network connectivity. Furthermore, this also enables many more applications of deep learning with important features only made available at the edge. This paper takes a data-driven approach to present the opportunities and design challenges faced by Facebook in order to enable machine learning inference locally on smartphones and other edge platforms.

Related Publications

All Publications

SIGGRAPH - August 9, 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation

He Zhang, Yuting Ye, Takaaki Shiratori, Taku Komura

SIGGRAPH - August 9, 2021

Control Strategies for Physically Simulated Characters Performing Two-player Competitive Sports

Jungdam Won, Deepak Gopinath, Jessica Hodgins

ICML - July 18, 2021

Align, then memorise: the dynamics of learning with feedback alignment

Maria Refinetti, Stéphane d'Ascoli, Ruben Ohana, Sebastian Goldt

CVPR - June 18, 2021

Improving Panoptic Segmentation at All Scales

Lorenzo Porzi, Samuel Rota Bulò, Peter Kontschieder

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy