Publication

M3RL: Mind-Aware Multi-Agent Management Reinforcement Learning

International Conference on Learning Representations (ICLR)


Abstract

Most of the prior work on multi-agent reinforcement learning (MARL) achieves optimal collaboration by directly learning a policy for each agent to maximize a common reward. In this paper, we aim to address this from a different angle. In particular, we consider scenarios where there are self-interested agents (i.e., worker agents) which have their own minds (preferences, intentions, skills, etc.) and can not be dictated to perform tasks they do not want to do. For achieving optimal coordination among these agents, we train a super agent (i.e., the manager) to manage them by first inferring their minds based on both current and past observations and then initiating contracts to assign suitable tasks to workers and promise to reward them with corresponding bonuses so that they will agree to work together. The objective of the manager is to maximize the overall productivity as well as minimize payments made to the workers for ad-hoc worker teaming. To train the manager, we propose Mind-aware Multi-agent Management Reinforcement Learning (M3RL), which consists of agent modeling and policy learning. We have evaluated our approach in two environments, Resource Collection and Crafting, to simulate multi-agent management problems with various task settings and multiple designs for the worker agents. The experimental results have validated the effectiveness of our approach in modeling worker agents’ minds online, and in achieving optimal ad-hoc teaming with good generalization and fast adaptation.

Related Publications

All Publications

Federated Learning for User Privacy and Data Confidentiality Workshop At ICML - July 24, 2021

Federated Learning with Buffered Asynchronous Aggregation

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Michael Rabbat, Mani Malek, Dzmitry Huba

UAI - July 28, 2021

A Nonmyopic Approach to Cost-Constrained Bayesian Optimization

Eric Hans Lee, David Eriksson, Valerio Perrone, Matthias Seeger

ACM MM - October 20, 2021

EVRNet: Efficient Video Restoration on Edge Devices

Sachin Mehta, Amit Kumar, Fitsum Reda, Varun Nasery, Vikram Mulukutla, Rakesh Ranjan, Vikas Chandra

ICCV - October 11, 2021

Egocentric Pose Estimation from Human Vision Span

Hao Jiang, Vamsi Krishna Ithapu

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy