Publication

Linguistic generalization and compositionality in modern artificial neural networks

Philosophical Transactions of the Royal Society B


Abstract

In the last decade, deep artificial neural networks have achieved astounding performance in many natural language processing tasks. Given the high productivity of language, these models must possess effective generalization abilities. It is widely assumed that humans handle linguistic productivity by means of algebraic compositional rules: Are deep networks similarly compositional? After reviewing the main innovations characterizing current deep language processing networks, I discuss a set of studies suggesting that deep networks are capable of subtle grammar-dependent generalizations, but also that they do not rely on systematic compositional rules. I argue that the intriguing behaviour of these devices (still awaiting a full understanding) should be of interest to linguists and cognitive scientists, as it offers a new perspective on possible computational strategies to deal with linguistic productivity beyond rule-based compositionality, and it might lead to new insights into the less systematic generalization patterns that also appear in natural language.

Related Publications

All Publications

Robust Market Equilibria with Uncertain Preferences

Riley Murray, Christian Kroer, Alex Peysakhovich, Parikshit Shah

AAAI - February 12, 2020

Weak-Attention Suppression For Transformer Based Speech Recognition

Yangyang Shi, Yongqiang Wang, Chunyang Wu, Christian Fuegen, Frank Zhang, Duc Le, Ching-Feng Yeh, Michael L. Seltzer

Interspeech - October 26, 2020

Machine Learning in Compilers: Past, Present, and Future

Hugh Leather, Chris Cummins

FDL - September 14, 2020

Unsupervised Cross-Domain Singing Voice Conversion

Adam Polyak, Lior Wolf, Yossi Adi, Yaniv Taigman

Interspeech - August 8, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy