Linguistic generalization and compositionality in modern artificial neural networks

Philosophical Transactions of the Royal Society B


In the last decade, deep artificial neural networks have achieved astounding performance in many natural language processing tasks. Given the high productivity of language, these models must possess effective generalization abilities. It is widely assumed that humans handle linguistic productivity by means of algebraic compositional rules: Are deep networks similarly compositional? After reviewing the main innovations characterizing current deep language processing networks, I discuss a set of studies suggesting that deep networks are capable of subtle grammar-dependent generalizations, but also that they do not rely on systematic compositional rules. I argue that the intriguing behaviour of these devices (still awaiting a full understanding) should be of interest to linguists and cognitive scientists, as it offers a new perspective on possible computational strategies to deal with linguistic productivity beyond rule-based compositionality, and it might lead to new insights into the less systematic generalization patterns that also appear in natural language.

Related Publications

All Publications

ICML - July 18, 2021

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization

David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

ICML - July 18, 2021

Variational Auto-Regressive Gaussian Processes for Continual Learning

Sanyam Kapoor, Theofanis Karaletsos, Thang D. Bui

ICCV - October 11, 2021

Contrast and Classify: Training Robust VQA Models

Yash Kant, Abhinav Moudgil, Dhruv Batra, Devi Parikh, Harsh Agrawal

ICCV - October 10, 2021

Revitalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Taosha Fan, Kalyan Vasudev Alwala, Donglai Xiang, Weipeng Xu, Todd Murphey, Mustafa Mukadam

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy