Publication

Learning to Compute Word Embeddings On the Fly

ArXive


Abstract

Words in natural language follow a Zipfian distribution whereby some words are frequent but most are rare. Learning representations for words in the “long tail” of this distribution requires enormous amounts of data. Representations of rare words trained directly on end tasks are usually poor, requiring us to pre-train embeddings on external data, or treat all rare words as out-of-vocabulary words with a unique representation. We provide a method for predicting embeddings of rare words on the fly from small amounts of auxiliary data with a network trained end-to-end for the downstream task. We show that this improves results against baselines where embeddings are trained on the end task for reading comprehension, recognizing textual entailment and language modeling.

Related Publications

All Publications

Growing Action Spaces

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve

July 14, 2020

Stochastic Hamiltonian Gradient Methods for Smooth Games

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas

ICML - July 12, 2020

Invariant Causal Prediction for Block MDPs

Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau, Yarin Gal, Doina Precup

ICML - July 14, 2020

To help personalize content, tailor and measure ads, and provide a safer experience, we use cookies. By clicking or navigating the site, you agree to allow our collection of information on and off Facebook through cookies. Learn more, including about available controls: Cookies Policy